Randomness in Correlation and
Correlation Hacking: Explicit
Distributions

Summary: Let Xy, Xo, ... X,and Yy, Ys, ... Y, beindependent Gaussian Standard r.v.s. with

E(ix,- Y,
i=1

i=1,2, ...d, dbeingthe number of separate realizations of the pair (X, Y).

max max

=0 .We are looking for the exact distributions @(p,,) and (p(pn‘d ) where p," =sup(0on ),
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Theorem :
For n>0 even,
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y(p, n)= pr(;i)3
0 elsewhere
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Background: How significant, i.e. nonrandom, is a correlation coefficient (Pearson’s product moment)
for a bivariate normal distribution? For random matrices, we have a well-developed Marchenko-Pastur
theory. Here we are confronted with a simple problem: pairwise correlation. Understanding the deriva-
tions will allow us to generalize and obtain the distribution of the maximum (or minimum) used
in p-hacking.
The mission for us to always rederive, as many things taken for granted are often misapplied. This
exercise for instance will show that the usual approximation ¢ (p,,) (for the case E (p) = 0 for all n)
inspired from an old derivation by Fisher in 1912, does not work well for small n.
(1-p)7 . _
d(pp) = ﬁ where B(., .) is the Beta Function
2’ 2

There are many routes (one entailing cosine of angles). We opt for the Fourier route.
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Step 0: Verifying that Z 990 and W/ are independent by Monte Carlo Confirmation

tameta = Table[ta = Table[ (a = RandomVariate[NormalDistribution[], 100];

b = RandomVariate[NormalDistribution[], 100]);

{a.b, \/Total[az] \/Total[bz] }, {10"3}] // Transpose;
{KendallTau[ta[[1]], ta[[2]]], SpearmanRho[ta[[1]], ta[[2]]],

Correlation[ta[[1]], ta[[2]]], HoeffdingD[ta[[1]], ta[[2]1]11}, {10'\3}];

Mean[tameta]

{-0.0000552032, -0.000152817, -0.000272621, 0.000806137}

Step|: distribution of Z,

The distribution Z, =37, X; Y; has for PDF

255 1N Abs[x];’(’l*”) BesselK[ LN, Abs[x]
fi= [2’52},Xe(—oo,oo)

V. Gamma [ ]

Proof. The Characteristic function x,(t)=e z © °°, f,(x)= PDF = \)270

There is a theorem showing that the chf of a product X and Y (both independent) is

Xxy() = [T xxt) () dy = [ xy(tx) fe(x) dy

Since both X and Y follow the same distribution:

Integrate:x,(t) [ x.(t x) f(x) dx= ——
grate:x;(f) [~ xx(tx) f(x) N

The Characteristic function of n-summed variables: x;, (t) = (1+ 2 o)™

Hence by the inversion theorem:

n 1 42 T -
277 g~'=" Abs[z]z ") BesseIK[12—”, Absia
a

1 1
fz.2-— | exp(-itz) dt=
277 Jo [o* 2+ 1 N Gamma[g—]

Step 2a: distribution W,

The distribution W,2 =5, X? 57, Y? has for PDF
_ 211 7147 BesseIK[O,Jz_]
a r[lzl]Z

f , z>0
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Instead of going directly to W,we operate in 2 steps.

Proof: By a standard result,

>M_, X2 &~ Chi Square(n) , same for 57_; Y;2. Both sums are independent.
We need the product.
Characteristic function of >7_; X5

() =(1-2it)y"

2

n n
Characteristicfunctionof w= » X? > Y7
i=1 i=1

2 reTwr (1-2itw)? U oon i
XW(t):f dw=2"(-it) HypergeometrlcU[—, 1, —]
F(;—') 2 4t

Step 2b: W,

The distribution Wn=w/2,’-’:1 X?351.Y? has for PDF

227" z,"1*1 BesselK[0,2,]
f2 =

37

, 22>0

Proof: straight transformation of r.v.

Step 3: Distribution of ratio Z, /W,

Given independence, the joint distribution is

£ f _Zi’azn z, 1‘"Abs[x]i 1" BesselK[0,z,] BesselK[L (-1+n),Abs[x] ]
112=

Vr T3]

This is more involved. Let r=zi, w= Z, we have by standard change of random vari-
2

able
275 Abs[pw] ' BesselK[0,w] BesselK[ (-1+n),Abs[p] w] w"

ver[5)
Finally, the marginal @ (p)= ﬁ(p,w) dw. (Shortcut: we write p for p,,)

f (o, w) =

For n even:
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For n odd we can do some more complicated work.

We can see for 4, 10, and 144 how the blue approximation fails to properly capture the distribution
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Distribution of maximum spurious correlation with d variables and n data points per variable. Shows the
expected bias from “data hacking” when the operator has d pairs to choose from.

Manipulate[Plot[distmax[p, n, d], {0, -.5, .9},
PlotRange » All, AxeslLabel -» {p, "Pr'"}], {d, 4, 10, 1}, {n, 4, 1000, 2}]
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m Expected Max

Discrete Variables.



